martes, 22 de julio de 2025

La hidrocerámica vs otros materiales aislantes

La hidrocerámica fue desarrollada en el año 2014 por un equipo de estudiantes del Instituto de Arquitectura Avanzada de Cataluña (IAAC), liderado por la arquitecta Areti Markopoulou, como parte del proyecto de investigación "Responsive Environments".

Este material nace con el objetivo de crear soluciones arquitectónicas pasivas para el enfriamiento de edificaciones, inspiradas en sistemas naturales de autorregulación como el sudor humano. El sistema combina arcilla, tela elástica y polímeros superabsorbentes (hidrogel) para permitir la absorción de humedad y su posterior evaporación, generando un descenso de temperatura sin consumo de energía.

Aunque aún se encuentra en fase de experimentación, la hidrocerámica ha sido reconocida por su potencial sustentable, bioclimático y de bajo costo, especialmente para regiones cálidas y húmedas. Desde su presentación, ha sido objeto de análisis en blogs, universidades y plataformas de innovación arquitectónica.

🔍 Comparación de la hidrocerámica con otros materiales

Producto / Sistema

Tipo de Regulación

               Pros

                Contras

Hidrocerámica

Pasiva (evaporación del hidrogel)

- Reducción térmica natural (~5°C)
- Bajo consumo energético
- Materiales accesibles
- Recarga natural (lluvia)
- Innovador y sustentable

- Prototipo, sin aplicación masiva
- Durabilidad aún en prueba
- Requiere humedad ambiental
- Difícil estandarización industrial

Paneles de aislamiento térmico (EPS, XPS, lana mineral, poliuretano)

Pasiva (bloqueo de transferencia térmica)

- Alta disponibilidad comercial
- Excelente aislamiento térmico
- Instalación sencilla
- Aprobados en normativas

- No enfrían, solo aíslan
- Derivados del petróleo (impacto ambiental)
- No autoregulables
- Sin interacción con humedad

Revestimientos ventilados (fachadas dobles o ventiladas)

Pasiva + activa (flujo de aire natural o inducido)

- Muy eficaces en climas cálidos
- Disminuyen ganancia térmica
- Bajo mantenimiento
- Mejora estética

- Costosos
- Requieren diseño técnico especializado
- No funcionan igual en climas húmedos
- Obra gruesa más compleja

Sistemas de climatización mecánica (aires acondicionados, VRF, split)

Activa (eléctrica)

- Alta capacidad de control térmico
- Muy precisos
- Disponibles en el mercado global

- Alto consumo energético
- Mantenimiento periódico
- No sustentables si no hay energías renovables
- Requiere instalación eléctrica compleja

Techos verdes / muros verdes

Pasiva (evapotranspiración vegetal)

- Mejora el confort térmico y acústico
- Captura CO₂, filtra aire
- Estética natural
- Longevidad adecuada

- Alto peso estructural
- Requiere riego y mantenimiento
- Más costoso a mediano plazo
- Requiere condiciones climáticas adecuadas

Materiales de cambio de fase (PCM)

Pasiva (almacenan y liberan calor)

- Eficiencia térmica inteligente
- Integrables en muros/pisos
- Disminuyen cargas de climatización

- Costosos
- Difíciles de aplicar sin soporte técnico
- Menor vida útil si no están bien encapsulados


VENTAJAS DE LA HIDROCERÁMICA

  • En climas cálidos y húmedos, podría superar a otros materiales pasivos, al producir enfriamiento real mediante evaporación.
  • Puede formar parte de una estrategia bioclimática sin necesidad de consumos energéticos, lo cual es muy atractivo en arquitectura sustentable.
  • Posibilita fabricación local (con arcilla, polímeros comunes y textiles), reduciendo huella de carbono frente a sistemas importados o industriales.
                              Cubierta verde                               Paneles de aislamiento estructural SIP
Fuentes:

⚠️ DESVENTAJAS CLAVE

  • Todavía no está disponible como producto comercial estandarizado.
  • Presenta limitaciones estructurales y de durabilidad, especialmente en exteriores expuestos a radiación UV, viento o heladas.
  • Su rendimiento es dependiente de la humedad ambiental: en climas secos no funcionaría bien.
  • Requiere más investigación para validar su vida útil y comportamiento en condiciones reales.
Fuente: https://arquitecturayempresa.es/sites/default/files/styles/n1000x540/public/imagenes/noticia/arquitectura_ hydroceramics_portada.jpg?itok=tH0F5wYB



🧩 CONCLUSIÓN

La hidrocerámica representa una solución bioclimática emergente con gran potencial en sostenibilidad arquitectónica, especialmente en regiones tropicales o subtropicales. Aunque no puede competir aún con materiales industriales o sistemas mecánicos en términos de estandarización o precisión, su bajo costo operativo y principio ecológico la hacen ideal como sistema de enfriamiento pasivo alternativo, sobre todo en proyectos de innovación o vivienda de bajo consumo energético.

 

viernes, 18 de julio de 2025

Hydroceramic: translation for English-speaking readers

Spanish version

Hydroceramic vs. Other Insulating Materials

Hydroceramic was developed in 2014 by a team of students from the Institute for Advanced Architecture of Catalonia (IAAC), led by architect Areti Markopoulou, as part of the research project "Responsive Environments."

This material was created with the goal of providing passive architectural solutions for building cooling, inspired by natural self-regulating systems such as human sweating. The system combines clay, elastic fabric, and superabsorbent polymers (hydrogel) to allow moisture absorption and subsequent evaporation, resulting in a temperature drop without energy consumption.

Although it is still in the experimental phase, Hydroceramic has been recognized for its sustainable, bioclimatic, and low-cost potential, particularly for hot and humid regions. Since its introduction, it has been analyzed in blogs, universities, and architectural innovation platforms.

🔍 COMPARISON OF THERMAL REGULATION MATERIALS

Product / System

Type of Regulation

Pros

Cons

Hydroceramic

Passive (evaporation of hydrogel)

- Natural cooling (~5°C)
- No energy consumption
- Low-cost, accessible materials
- Naturally recharges with rain
- Innovative and sustainable

- Still a prototype
- Durability under testing
- Requires ambient humidity
- Difficult to standardize industrially

Thermal insulation panels (EPS, XPS, mineral wool, polyurethane)

Passive (thermal barrier)

- Widely available
- High thermal insulation performance
- Easy installation
- Standardized in building codes

- Do not cool, only insulate
- Petroleum-based (environmental impact)
- Not self-regulating
- No interaction with humidity

Ventilated façades (double skin façades)

Passive + active (natural or induced air flow)

- Highly effective in warm climates
- Reduce thermal gain
- Low maintenance
- Enhance aesthetics

- Expensive
- Require specialized design
- Less effective in humid climates
- More complex structural requirements

Mechanical HVAC systems (AC units, VRF, split systems)

Active (electric-powered)

- Precise thermal control
- High cooling capacity
- Globally available

- High energy consumption
- Requires frequent maintenance
- Not sustainable without renewables
- Complex electrical installation

Green roofs / living walls

Passive (plant evapotranspiration)

- Improve thermal and acoustic comfort
- Capture CO₂, filter air
- Aesthetic value
- Long-lasting if maintained

- Heavy structural load
- Requires irrigation and care
- Costly over time
- Dependent on climate conditions

Phase Change Materials (PCMs)

Passive (store and release heat)

- Smart thermal efficiency
- Integrable in walls/floors
- Reduce HVAC loads

- Expensive
- Require technical support
- Shorter lifespan if not encapsulated properly


ADVANTAGES OF HYDROCERAMIC

  • In hot and humid climates, it may outperform other passive materials by producing actual cooling through evaporation.
  • It enables bioclimatic strategies without energy consumption, making it highly attractive for sustainable architecture.
  • Allows for local fabrication using clay, common polymers, and textiles, reducing the carbon footprint compared to imported or industrial systems.
                                Green roof                                          Structural insolated panels SIP
Sources:

⚠️ KEY DISADVANTAGES

  • Not yet available as a standardized commercial product.
  • Structural and durability limitations, especially when exposed to UV radiation, wind, or frost.
  • Performance is dependent on ambient humidity—not suitable for dry climates.
  • Requires further research to confirm long-term behavior and performance in real-world applications.

Source: https://arquitecturayempresa.es/sites/default/files/styles/n1000x540/public/imagenes/noticia/arquitectura_ hydroceramics_portada.jpg?itok=tH0F5wYB


🧩 CONCLUSION

Hydroceramic represents an emerging bioclimatic solution with great potential in sustainable design, especially in tropical or subtropical regions. While it cannot yet compete with industrial materials or mechanical systems in terms of standardization and precision, its low operational cost and ecological design make it ideal as a passive cooling alternative, especially for innovative or energy-efficient housing projects.





How Hydroceramic Is Created

🧱 1. Selection and Preparation of Materials

·        Porous Ceramic Clay
A medium-grain clay (silica + alumina) is selected, optimized to ensure good capillarity and water retention, outperforming aluminum or acrylic due to its natural porosity.
ArchDaily+4designboom+4Materiability+4

·        Hydrogel
Crosslinked polyacrylamides or polyolefins are used, capable of absorbing between 500 and 1000 g of water per gram of dry hydrogel. These hydrogels are activated through prolonged humidification until they reach their maximum volume.
arXiv

·        Carrier Fabric
A technical fabric (microfiber or elastic polyester) is used, dimensioned to contain the hydrogel granules while allowing for their expansion without breaking.



🔄 2. Layered Fabrication

Molding of the Outer Ceramic Layer
Using CNC molding or sheet pressing with conical perforations (truncated cone shapes), ambient water entry and homogeneous distribution are facilitated.
Firing occurs at 1000–1100 °C to guarantee porosity without excessive density.

Application of the Elastic Intermediate Layer
The carrier fabric is sewn or adhered onto the ceramic layer, evenly covering the pores. Activated hydrogel granules are then distributed directly onto the fabric, creating a continuous layer.

Encapsulation with a Second Clay Layer
A thin layer of clay is added over the fabric and hydrogel to partially seal the system, preventing direct pellet loss while allowing evaporative diffusion.

Manufacturing of Hydroceramic module

Fuente: https://arquitecturayempresa.es/noticia/hidroceramica-ladrillos-de-enfriamiento-pasivo-para-una-arquitectura-sostenible



🌡3. Drying and Curing

• The composite body is slowly dried at 40–60 °C to remove excess moisture without damaging the hydrogel or causing cracks in the ceramic.
• It is then cured at room temperature for 24–48 hours, stabilizing internal tensions and consolidating the interaction between layers.


🌬4. Passive Cooling Principle

• When ambient temperature rises, the hydrogel releases water through evaporation. This water migrates from the fabric to the ceramic surface, exploiting its porosity.
• The evaporation process consumes thermal energy (approximately 0.6 kcal per gram of water), reducing the internal temperature by 5–6 °C. Sources: Materiability, IAAC Barcelona, designboom


📈 5. Verified Optimal Performance

• In controlled tests (35–40 °C), Hydroceramic reduced interior temperatures by ~5–6 °C within ~20 minutes, increasing indoor humidity by up to 15–20%. (Source: ArchDaily)
• It is estimated that it can save up to 28% in air conditioning energy consumption in architectural applications. Sources: Fenner-Esler, designboom, ArchDaily

Hydroceramic operation

Fuente: https://arquitecturayempresa.es/noticia/hidroceramica-ladrillos-de-enfriamiento-pasivo-para-una-arquitectura-sostenible



Technical Advantages and Sustainability

Energy Efficiency: Reduction of electrical consumption and CO₂ emissions (~56 kg per month per unit).
Affordable Cost: Composed of low-cost materials (industrial clay and hydrogel), applicable in remote areas.
Scalability: The system can be scaled to modular panels or complete façades, customizing the truncated cone shapes according to architectural profiles.


Hydroceramic in 2025

Hydroceramic combines porous ceramic with a hydrogel capable of absorbing and retaining large amounts of water (up to 500 times its weight). As temperatures rise, the water contained in the hydrogel evaporates, producing an evaporative cooling effect in the environment, helping reduce indoor building temperatures without mechanical systems.

Key Features:
• Passive climate control material.
• Can reduce interior temperatures by 5–6 °C, as confirmed by tests.
• Performs especially well in hot, dry climates.

Current Limitations (as of 2025):
• Still in development and prototyping phase; not yet a standard commercial product.
• Requires maintenance to preserve the hydrogel’s hydration level.


Incremental Technical Summary

Stage

          Action

Primary Objective

1

Clay molding with perforations

Efficient capture of ambient moisture

2

Placement of carrier fabric + hydrogel

Containment, expansion, and dynamic water absorption

3

Encapsulation with upper ceramic layer

Partial sealing for evaporation control

4

Drying and curing

Stabilization of the composite and preservation of the system

5

Evaporation triggered by ambient heat

Natural cooling through energy consumption


Introduction to Hydroceramic

Areti Markopoulou, Project Director.

Source: http://www.iaacblog.com/events/rsiii-digital-matter-intelligent-constructions-final-presentations/

Areti Markopoulou, academic director at the Institute for Advanced Architecture of Catalonia, along with students Elena Mitrofanova, Akanksha Rathee, and Pong Santayanon, developed this promising construction technique. It may address many problems caused by global temperature increases in the coming years.

"It functions as an evaporative cooling device that reduces temperatures by up to 5 or 6 degrees while increasing humidity. Its passive intelligence makes its performance proportional to the external heat: it cools more when it’s hotter outside." — Areti Markopoulou, Teknautas

The project has gained considerable attention as the need it seeks to fulfill is not isolated, and issues related to erratic temperatures will unfortunately become commonplace in the near future.

For now, Hydroceramic remains in the prototype stage, with many characteristics still being refined to truly become a viable construction alternative. However, even at this stage, it has proven to be a well-conceived product aligned with expected future changes.

Components of Hydroceramic

Source: http://www.intelligentconstructions.com/projects/hydroceramich 

"The final prototype is similar to a brick or tile, which could be used to create passive cooling walls or façades. The use of clay has been key to optimizing the evaporation process; without a doubt, we are all familiar with the passive mechanism of the botijo," said Areti Markopoulou, Teknautas.

Undoubtedly, the great potential of Hydroceramic will eventually make it a valuable material in the Architecture of the future. For now, energy-wasting techniques used for cooling spaces will continue to dominate the industry. However, it is clear that it won’t be long before self-sustaining buildings, capable of directly interacting with their environment to regulate their functions, take over that role and lead us into the future. The final prototype resembles a brick or tile, usable for creating passive cooling walls or façades. Clay has been key in optimizing the evaporation process, similar to traditional ceramic water coolers.

 

How Hydroceramic Works
Hydroceramic is designed as a low-cost material, with a simple composition that does not require extensive technical knowledge. It consists of four parts:

Base Clay Layer: Its form allows interior temperatures of buildings covered with Hydroceramic to decrease through a process similar to breathing.
Hydrogel Particles: Various chemical compositions, such as hydroxyethyl acrylate polymers, acrylamide, or polyethylene oxide, absorb external water and retain it until ambient temperatures rise.
Elastic Absorbent Fabric: Wraps the hydrogel particles, aiding in water retention.
Second (Perforated) Clay Layer: Through its multiple holes, exposed parts of the elastic fabric trap moisture and, through the hydrogel particles, retain it until temperature rise triggers the cooling process.
Electrical System: For enhanced performance, Hydroceramic can incorporate a system for pumping water and activating cooling processes under certain conditions.

The combined use of all these parts allows Hydroceramic to reduce interior building temperatures by up to approximately 5 °C.

 

Hydroceramic components

Source: http://www.tecnoneo.com/2014/09/estudiantes-del-iaac-crean-hydroceramic.html

It is worth noting that the material required to manufacture the casings protecting the elastic fabric and hydrogel does not necessarily have to be clay. In the future, materials such as aluminum or plastic may also be implemented.

 

Hydroceramic diagram

   Source: http://www.tecnoneo.com/2014/09/estudiantes-del-iaac-crean-hydroceramic.html

Hydroceramic is primarily focused on reducing temperature with low energy costs. According to its creators, energy savings compared to current cooling systems could reach up to 28%. However, as it is an envelope construction element, it will be anchored to the building’s architecture from its construction and remain so until its eventual dismantling. For this reason, Hydroceramic is aimed at constructions in locations with real, constant cooling requirements; in other circumstances, the system would become purely ornamental.

Heat radiation with Hydroceramic

Source: http://www.designboom.com/architecture/iaac-dmic-hydroceramic-passive-cooling-system-09-18-2014/

Applications of Hydroceramic
With the constant rise in global temperature and the apparent ineffectiveness of efforts by those attempting to change our planet’s unfortunate future, there is no choice but to prepare through different methods that allow us to cope more tolerably with expected changes in Earth’s climate.

  Climate Change

While today there are places where the idea of Hydroceramic could already be perfectly implemented, it is a fact that the need for systems capable of maintaining bearable temperatures—at least inside buildings—will become increasingly evident over time.

Application of Hydroceramic

Thanks to its low-energy cooling system, Hydroceramic could be an efficient alternative in low-resource countries to provide shelter for those affected by high temperatures. It is even possible that an architectural typology may develop that, in addition to offering heat refuge and serving as a multipurpose space, features the aesthetic characteristics necessary to classify it as a construction worthy of the art of building.


Conclusions

Applications of Hydroceramic:
It is evident that for Hydroceramic to become a commonly used material in construction, it must still undergo multiple tests. These will not always be laboratory tests; its true usefulness can only truly be appreciated when an ordinary person, with real needs, finds in this new type of cooling system a solution to the problems created by the construction of their architectural space.

Hydrogel


Source: http://g02.a.alicdn.com/kf/HTB1DpEHHVXXXXa1XVXXq6xXFXXXD/100g-blue-pers-Crystal-Soil-Mud-Water-Bead-Pearl-Plant-Magic-jelly-hydrogel-novelty-Balls-Wedding.jpg

Current technology and the concept of buildings people have today must still evolve so that the idea of Hydroceramic can move beyond architectural design exhibitions and be truly implemented in construction.

How Hydroceramic Works:
The clear effort by the designers of Hydroceramic to create a construction material positioned as a true alternative to solve the problems humanity faces in the energy field (whose activity has led to multiple ecological dilemmas) has drawn the attention of many experts, especially in the construction sector. Therefore, it is impossible to deny the innovation of the idea, which adapts in multiple ways to current times, promising to reduce human effort to obtain comfort at its minimum expression.

Cooling with Hydroceramic